Glucose repression in Saccharomyces cerevisiae

نویسندگان

  • Ömur Kayikci
  • Jens Nielsen
  • Monique Bolotin-Fukuhara
چکیده

Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluconeogenesis. This dominant effect of glucose on yeast carbon metabolism is coordinated by several signaling and metabolic interactions that mainly regulate transcriptional activity but are also effective at post-transcriptional and post-translational levels. This review describes effects of glucose repression on yeast carbon metabolism with a focus on roles of the Snf3/Rgt2 glucose-sensing pathway and Snf1 signal transduction in establishment and relief of glucose repression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Steady-state analysis of glucose repression reveals hierarchical expression of proteins under Mig1p control in Saccharomyces cerevisiae.

Glucose repression is a global transcriptional regulatory mechanism commonly observed in micro-organisms for the repression of enzymes that are not essential for glucose metabolism. In Saccharomyces cerevisiae, Mig1p, a homologue of Wilms' tumour protein, is a global repressor protein dedicated to glucose repression. Mig1p represses genes either by binding directly to the upstream repression se...

متن کامل

A glucose transporter chimera confers a dominant negative glucose starvation phenotype in Saccharomyces cerevisiae.

A family of glucose transporters mediates glucose uptake in Saccharomyces cerevisiae. We show that the dominant mutation GSF4-1, which impairs glucose repression of SUC2, results in a nonfunctional chimera of the transporters Hxt1p and Hxt4p. Hxt1/4p inhibits the function of wild-type glucose transporters. Similar mutations may facilitate analysis of the major facilitator superfamily.

متن کامل

Catabolite repressive effects of 5-thio-D-glucose on Saccharomyces cerevisiae.

The effect of the glucose analogue 5-thio-D-glucose (5TG) on the yeast Saccharomyces cerevisiae was studied. Derepression of mitochondrial respiratory chain cytochromes, alcohol dehydrogenase (isoenzyme II), NADH dehydrogenase and maltase was inhibited by 0.5-2 mM-5TG. Growth rate was only slightly affected. Ethanol was efficiently produced with 2 mM-5TG in medium initially containing 0.25% glu...

متن کامل

A negative regulating element controlling transcription of the gene encoding acyl-CoA oxidase in Saccharomyces cerevisiae

Peroxisomes are induced in Saccharomyces cerevisiae when this yeast is grown in the presence of oleate, and are repressed when glucose is supplied as the carbon source. Concomitant with this is an induction/repression of peroxisomal beta-oxidation enzymes. We are investigating the transcriptional control of acyl-CoA oxidase, the first and rate-limiting enzyme in the peroxisomal beta-oxidation c...

متن کامل

Catabolite repression by galactose in overexpressed GAL4 strains of Saccharomyces cerevisiae.

Catabolite repression by galactose was investigated in several strains of Saccharomyces cerevisiae grown on different carbon sources. Galactose repressed as much as glucose; raffinose was less effective. Full derepression was achieved with lactate. The functions tested were L-lactate ferricytochrome c oxidoreductase, NAD-glutamate dehydrogenase, and respiration. Galactose repression was observe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2015